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Abstract

The present paper is concerned with mixed convection in a vertical plane parallel channel filled with a porous medium. Steady parallel flow is
examined, assuming that the effect of viscous dissipation is significant. Under these assumptions, the governing balance equations admit a first
integral, so that the general solution can be given in an exact analytical form in terms of the Weierstrass’ elliptic P-function. Based on this general
solution and on a suitable parametrization of the problem, a unified approach which applies to all the thermal boundary conditions compatible with
the steady parallel flow regime is reported. It is shown that the velocity field can either be unidirectional or bidirectional. Moreover, bidirectional
flow configurations are possible also for vanishing average velocity, Um = 0. A remarkable feature of the problem is that for Um < Um,max,
even two solution branches (dual solutions) exist, which merge when Um approaches its maximum value Um,max. The general features of the
solution space, as well as the mechanical and thermal characteristics of the flow are discussed for two cases of physical and engineering interest
(isoflux÷variable temperature, and isoflux÷isoflux wall conditions) in some detail.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The current research interest in the fluid flow and heat trans-
fer in porous media, as being documented in several compre-
hensive works published recently (see e.g. Nield and Bejan [1],
Vafai [2], Bejan et al. [3], and Pop and Ingham [4]), is moti-
vated by numerous applications of this class of phenomena in
the modern technologies. Due to their important applications
in mechanical, electrical, chemical, energy, environmental and
civil engineering, a special attention has been paid to the inter-
nal flows in ducts and channels filled with porous media. The
thermally developing forced convection flow in a parallel-plate
channel or circular tube filled by a saturated porous medium
with walls at uniform temperature or uniform heat flux, with
axial conduction and viscous dissipation has been investigated
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by an extended Graetz method in a series of papers by Nield
et al. [5–8] and Kuznetsov et al. [9]. An exact analytical solu-
tion of the Graetz problem for these basic duct geometries when
the axial conductivity is significant has very recently been re-
ported by Minkowycz and Haji-Sheikh [10]. The heat transfer
in the thermal entrance region of a rectangular passage has been
studied by Haji-Sheikh et al. [11] with the aid of the Green
function method. Heterogeneity and variable viscosity effects
in ducts filled with porous materials have been considered by
Nield and Kuznetsov [12] and by Narashima and Lage [13] re-
spectively. The mixed convection in narrow vertical ducts with-
out the effect of viscous dissipation has been investigated by
Pop et al. [14]. Storesletten and Pop [15] have extended the
problem of buoyancy-driven viscous flow in a vertical parallel
plane channel posed by Banks and Zaturska [16] to the case of
a vertical porous layer with non-uniform wall temperature. The
effect of viscous dissipation has been included in the study of
the combined free and forced convection in a porous medium
between two vertical walls by Ingham et al. [17]. More recent
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Nomenclature

A,B dimensional constants . . . . . . . . . . . . . . . . . . . . . . ◦C
C,D dimensional constants of integration . . . . . . . . . . ◦C
cp specific heat at constant pressure . . . . . J kg−1 K−1

E dimensionless constant of integration
g gravitational acceleration . . . . . . . . . . . . . . . . . m s−2

g2, g3 invariants of the Weierstrass’ elliptic function,
Eqs. (29)

k thermal conductivity of the porous
medium . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−1 K−1

K permeability of the porous medium . . . . . . . . . . m2

L width of the channel . . . . . . . . . . . . . . . . . . . . . . . . . m
P hydrodynamic pressure. . . . . . . . . . . . . . kg m−1 s−2

P Weierstrass’ elliptic function, Eq. (28)
q heat flux, Eq. (6) . . . . . . . . . . . . . . . . . . . . . . . W m−2

qfrictional heat flux due to viscous dissipation,
Eq. (13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

q dimensionless heat flux, Eq. (17)
Ra Rayleigh number for the porous medium, Eq. (21)
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
Tm average temperature, Eq. (4b) . . . . . . . . . . . . . . . . ◦C

Tref reference temperature . . . . . . . . . . . . . . . . . . . . . . . ◦C
T∗ temperature scale, Eq. (16) . . . . . . . . . . . . . . . . . . ◦C
u dimensionless velocity along the channel, Eq. (17)
um dimensionless average velocity, Eq. (17)
U dimensional velocity along the channel . . . . m s−1

Um dimensional average velocity, Eq. (4a) . . . . . m s−1

U∗ velocity scale, Eq. (16) . . . . . . . . . . . . . . . . . . . m s−1

x, y dimensionless axial and transversal coordinates
X,Y dimensional axial and transversal coordinates . . m
y0 dimensionless constant of integration, Eq. (37)

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

β coefficient of thermal expansion . . . . . . . . . . . . K−1

γ,λ dimensionless parameters defined by Eq. (32)
μ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

θ dimensionless temperature, Eq. (19)
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1
contributions to the effect of viscous dissipation in addition to
the buoyancy effects have been published by Nield [18,19], and
by Magyari et al. [20]. Analytical Taylor series solutions have
been reported for the mixed convection in a vertical channel for
isoflux÷isothermal wall conditions by Barletta et al. [21]. The
same approach has been applied to the mixed convection chan-
nel flow of clear fluids for the case of symmetrical isothermal÷
isothermal wall conditions by Barletta et al. [22].

The present paper revisits the problem of the fully developed
mixed convection with non-negligible viscous dissipation in a
vertical channel filled with a porous medium and reports a uni-
fied analytical approach which applies to all the thermal bound-
ary conditions compatible with the steady parallel flow regime.
This unified approach is based on the general solution of the
governing balance equations which is obtained in an exact an-
alytical form in terms of the Weierstrass’ elliptic P-function.
In order to be specific, for two cases of physical and engineer-
ing interest (isoflux÷variable temperature, and isoflux÷isoflux
wall conditions), the features of the solution space, as well as
the mechanical and thermal characteristics of the flow are dis-
cussed in detail.

2. Governing equations

2.1. Problem formulation

Consider mixed convection flow in a vertical parallel plane
channel of width L, filled with a porous medium (Fig. 1). The
vertical X-axis points opposite to the acceleration due to the
gravity, g. The Y -axis is perpendicular to the walls which are
assumed to be impermeable. At each of the walls, a thermal
boundary condition either of the first kind (a temperature dis-
tribution), or one of the second kind (a heat flux) will be pre-
Fig. 1. Coordinate system and some general boundary conditions (0) and (1) at
Y = 0 and Y = L, respectively.

scribed. At the moment we name these prescriptions at Y = 0
and Y = 1 simply condition (0) and condition (1), respec-
tively, and specify them later in detail. It is further assumed
that the Darcy law, the Boussinesq and the Morton approxi-
mations hold, and that the heat generation by viscous friction
is non-negligible. We examine steady parallel flow in which
the only non-vanishing component of the seepage velocity field
is its longitudinal component U (X-component). We first as-
sume that this steady flow regime does really exist, and then
specify the subsidiary conditions of its existence. Under these
assumptions and, as a consequence of the continuity equation,
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the velocity U depends only on the transversal coordinate Y .
The hydrodynamic pressure gradient in the transversal direc-
tion, ∂P/∂Y , is vanishing, which means that P may depend
only on X. Thus, the corresponding Darcy and energy balance
equations read

μ

K
U = −dP

dX
+ ρgβ(T − Tref) (1)

U
∂T

∂X
= α

(
∂2T

∂Y 2
+ ∂2T

∂X2

)
+ ν

Kcp

U2 (2)

In the above equations, K is the permeability of the porous
medium, g is the magnitude of the gravitational acceleration,
β is the coefficient of thermal expansion, cp is the specific
heat at constant pressure, α = k/(ρcp) is the thermal diffu-
sivity and k the thermal conductivity of the porous medium,
ρ is the fluid density, μ is the dynamic viscosity, ν = μ/ρ is
the kinematic viscosity, P = p + ρgX is the hydrodynamic
pressure. As required by the Boussinesq approximation, all the
thermophysical properties are evaluated at the reference tem-
perature Tref. We assume that Tref may depend on the wall
coordinate X,Tref = Tref(X). Thus, integrating Eq. (1) with re-
spect to Y from 0 to L we get

μ

K
Um = −dP

dX
+ ρgβ

[
Tm(X) − Tref(X)

]
(3)

where

Um = 1

L

L∫
0

U(Y )dY, Tm(X) = 1

L

L∫
0

T (X,Y )dY (4a,b)

are average fluid velocity and temperature in a transversal sec-
tion of the channel, respectively.

Subtracting Eq. (3) from Eq. (1), we obtain for the tempera-
ture field the expression

T (X,Y ) = Tm(X) + ν

gβK

[
U(Y ) − Um

]
(5)

In Eq. (5), the thermophysical properties (which, as already
mentioned, have to be taken at T = Tref(X)), also depend on
X. In this respect the Morton approximation, [23] (an exten-
sion of the Boussinesq approximation) will be adopted, which
assumes that the X-dependence of thermophysical properties
may be neglected, and takes their values at some fixed station
of the flow (e.g., at X = 0). Thus, Eq. (5) implies that the tem-
perature field T (X,Y ) decomposes additively in an X- and an
Y -dependent part.

The first important consequence of this additive decomposi-
tion of T (X,Y ) is that the transversal heat flux

q̄(Y ) = −k
∂T

∂Y
= − νk

gβK

dU

dY
(6)

is everywhere independent of the wall coordinate X. This fea-
ture imposes certain restrictions on the flux-boundary con-
ditions which are compatible with the fully developed flow
regime (see below).

A second important consequence of the additive decomposi-
tion of T (X,Y ) can be extracted from equation

U
dTm

dX
− α

d2Tm

dX2
= αν

gβK

d2U

dY 2
+ ν

Kc
U2 (7)
p

which has been obtained by substituting Eq. (5) in the energy
equation (2). Indeed, the main message of Eq. (7) is that a
fully developed channel flow with a non-uniform velocity pro-
file U = U(Y ) only can exist when the average temperature Tm

is a constant or, at most, a linear function of X,

Tm(X) = A
X

L
+ B

[
U = U(Y )

]
(8)

where A and B (yet unknown) constants. In this case U = U(Y )

satisfies the equation

d2U

dY 2
+ ρgβ

k
U2 − gβKA

ανL
U = 0 (9)

and Eq. (5) of the temperature field becomes

T (X,Y ) = A
X

L
+ B + ν

gβK

[
U(Y ) − Um

]
(10)

Moreover, Eq. (7) also shows that a fully developed slug flow
U = constant = Um is also possible when

Um

dTm

dX
− α

d2Tm

dX2
= ν

Kcp

U2
m (11)

In this case, Eq. (5) implies T (X,Y ) = Tm(X) ≡ T (X), which
shows that the temperature field of the mixed convection slug
flow depends only on the wall coordinate X, being given by the
general solution of Eq. (11). This solution reads

T (X) = νUm

Kcp

X + Ce
Um
α

X + D (U = Um) (12)

where C and D are constants of integration.
The above results allow us to specify all those thermal

boundary conditions of the first and second kind which are com-
patible with the non-uniform parallel flow assumption adopted
in the present paper. Indeed, in this respect Eqs. (10) and (6)
show that the non-uniform velocity profile U = U(Y ) governed
by Eq. (9) is compatible only with:

(i) a prescribed wall temperature which is a linear function of
X (case A �= 0), or

(ii) a prescribed constant wall temperature (case A = 0), or
(iii) a prescribed constant wall heat flux.

Obviously, at the two walls of the channel, all the combina-
tions of the above conditions (and even their self-combinations)
are allowed, except for the combination of (i) and (ii), which
are mutually excluding conditions. It is worth underlining here
again that, in contrast to the variable wall temperature condi-
tions (i), no variable wall heat flux conditions are compatible
with the fully developed flow. In the case of the slug flow
U = Um, where the transversal heat flux (6) is identically van-
ishing, even the constant wall heat flux conditions are excluded,
except for the adiabatic conditions q̄(0) = q̄(L) = 0 (insu-
lated channel). There are different variable or constant surface
temperature conditions allowed, which can be obtained from
Eq. (11) for specified values of C and D. All these cases of the
slug flow in an adiabatically insulated channel are not a further
concern of the present paper.
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In addition to the velocity and temperature field, another
quantity of a basic physical interest is the heat flux resulting
from the volumetric heat generation by viscous friction,

q̄frictional = μ

K

L∫
0

U2 dY (13)

A further basic relationship is the balance equation of the heat
fluxes,

q̄frictional +
[
q̄(0) − q̄(L)

] = kA

L

LUm

α
(14)

which has been obtained by integrating Eq. (9) with respect to
Y from 0 to L and taking into account Eqs. (6) and (13). This
balance equation shows that, as expected, the average flux of
the heat transported by the moving fluid (the right-hand side of
Eq. (14)) equals the heat flux due to the viscous friction, added
to the net heat flux through the walls of the channel.

It is worth emphasizing here that (owing to the Morton ap-
proximation) all the above results are independent of the choice
of the reference temperature Tref, except for Eq. (3) which con-
nects the hydrodynamic pressure gradient dP/dX to Um,Tm

and Tref. A simple inspection of Eq. (3) suggests that it is ad-
vantageous to choose the reference temperature equal to the
average temperature (8) since for Tref = Tm, Eq. (3) reduces
to the simple form

−dP

dX
= μ

K
Um (15)

Eq. (15) shows that for the choice Tref = Tm, the longitudinal
pressure gradient dP/dX is a constant quantity. A further de-
sirable effect of the choice of Tref = Tm is that it maximizes
the accuracy of the Boussinesq approximation, by minimizing
the averaged square deviation from the local temperature of the
fluid.

2.2. Nondimensionalization

For the subsequent calculations it is convenient to introduce
the velocity and temperature scales

U∗ = k

ρgβL2
, T∗ = νk

ρg2β2L2K
= νU∗

gβK
(16)

as well as the dimensionless quantities

y = Y

L
, x = X

L
, u(y) = U(Y )

U∗
, um = Um

U∗

q(y) = L

kT∗
q̄(Y ), qfrictional = L

kT∗
q̄frictional (17)

In terms of the dimensionless variables (19), Eqs. (9), (10) and
(6) become

u′′ + u2 − Rau = 0 (18)
T (X,Y ) − Tm(X)

T∗
= u(y) − um ≡ θ(y) (19)

q(y) = −u′(y) (20)
where the primes denote differentiations with respect to y and

Ra = gβKLA

αν
(21)

is the Darcy–Rayleigh number. We mention that in connection
with the mixed convection porous channel flows the dimension-
less group (21) has first been used by Ingham et al. [17].

Furthermore, Eqs. (4a), (13), and (14) go over in

um =
1∫

0

udy (22)

qfrictional =
1∫

0

u2 dy, (23)

qfrictional + q(0) − q(+1) = Raum (24)

Eqs. (10), (16), (17) and (20) give for the dimensional surface
temperature distributions and the dimensionless surface heat
fluxes the following expressions

T (X,0) − (Ax + B)

T∗
= u(0) − um, q(0) = −u′(0)

T (X,L) − (Ax + B)

T∗
= u(1) − um, q(1) = −u′(1)

(25)

According to Eqs. (21) and (25) the Darcy–Rayleigh number
is non-vanishing only when both wall temperatures are (lin-
ear) functions of x, i.e. A �= 0. The sign of A also carries an
important physical information concerning the interplay of the
external driving force with the buoyancy forces (aiding or op-
posing flows). On this reason, the behaviour of the solutions
of our basic Eq. (18) under the sign change Ra → −Ra of the
Darcy–Rayleigh number is a physically important feature of the
problem. In this respect it can be shown that when u(y,Ra;um)

is a solution of Eq. (18) corresponding to the prescribed value
um of the average velocity, then it also possesses the property

u(y,Ra;um) = Ra + u(y,−Ra;um − Ra) (26)

Concerning the solution space of Eq. (18) it is also worth notic-
ing that, in addition to the trivial solution u = 0, Eq. (18) admits
the uniform solution u = Ra = um. The corresponding dimen-
sionless temperature θ(y) given by Eq. (19) is identically van-
ishing, so that T = Tm = Ax + B and q̄ ≡ 0.

3. The unified approach

3.1. The general analytical solution

Our basic differential equation (18) admits an exact analyt-
ical solution in terms of Weierstrass’ elliptic function P(y) =
P(y;g2, g3) (for the properties of P(y;g2, g3) see e.g. [24],
Chapter 18). Indeed, one immediately sees that Eq. (18) pos-
sesses the first integral

1
u′2 + 1

u3 − Ra
u2 = E (27)
2 3 2
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where E is an integration constant. Substituting u(y) =
(Ra/2) − 6P(y) in Eq. (27), we obtain for P(y) precisely the
differential equation of Weierstrass’ P function,

P ′2 = 4P3 − g2P − g3 (28)

with

g2 = Ra2

12
and g3 = − 1

18

(
E + Ra3

12

)
(29a,b)

Eq. (28) is invariant under any translation y → y + y0 of the in-
dependent variable y. Thus, its general solution is of the form
P = P(y + y0;g2, g3), where y0 is the second constant of in-
tegration of the problem. Accordingly, the general solution for
the velocity field has the form

u(y) = Ra

2
− 6P(y + y0;g2, g3) (30)

and the corresponding average velocity is obtained as

um = Ra

2
− 6

1∫
0

P(y + y0;g2, g3)dy (31)

The general solution (30) of Eq. (18) involves in addition to
the integration constants E and y0, the Darcy–Rayleigh num-
ber (21) which, as long as the constant A has not been specified,
is also an unknown quantity. Accordingly, the velocity problem
with three unknown constants and only two wall conditions is
still underdefined. On this reason, in addition to two boundary
conditions, also the value Um of the average flow velocity will
be prescribed which, as being the volumetric flow rate through
the transversal section of the channel, is an experimentally well
accessible quantity. In turn, the prescription of Um specifies via
Eq. (15) also the value of the constant pressure gradient dP/dX

(which is not a priori known).

3.2. Parametrization

As mentioned in Section 2.1, at the two walls of the chan-
nel several combinations and self-combinations of the boundary
conditions (i)–(iii) may be prescribed. Thus, the desire for a
unified description which applies to all these cases of practi-
cal interest arises in a natural way. The general solution (30)
being known, the remaining task is to find such a parametriza-
tion of the problem which allows us to determine the constants
of integrations E and y0 when any two of the compatible wall
conditions (i)–(iii) are prescribed.

Our option for this procedure is the parametric prescription
at the left wall (Y = 0) of the velocity u(0) and of the heat
flux q(0) = −u′(0). For these working parameters, the follow-
ing short notations will be used

u(0) = γ, u′(0) = −λ (32)

The main reason for the parametrization (32) is that Eq. (18)
along with the conditions (32) specifies an initial value problem
which, as it is well known, admits a unique solution for any
given values of γ and λ. Thus, the constants of integrations E

and y0 will be determined in terms of Ra, γ and λ uniquely,
and the solution of the initial value problem (18), (32) may be
written in the form u = u(y,Ra, γ, λ). Indeed, according to this
procedure, Eqs. (27) and (32) yield for E the explicit expression

E = 1

2
λ2 + 1

3
γ 3 − Ra

2
γ 2 (33)

while Eqs. (32) and (30) result in

P(y0;g2, g3) = Ra − 2γ

12
(34)

P ′(y0;g2, g3) = λ

6
(35)

With the aid of Eq. (33), the integration constant E can be elim-
inated from Eq. (29b) of g3, so that

g3 = − 1

36

(
λ2 + 2

3
γ 3 − Raγ 2 + Ra3

6

)
(36)

Furthermore, it is known (see e.g. [25], p. 1173), that the sys-
tem of equations {P(z;g2, g3) = p,P ′(z;g2, g3) = s} admits
for z a unique solution in terms of the inverse of Weierstrass’ P
function when for p and s the relationship s2 = 4p3 − g2p −
g3 holds. This solution is z = InverseWeierstrass P[{p, s},
{g2, g3}]. In the case of our Eqs. (34) and (35), we have
p = (Ra − 2γ )/12, s = λ/6, g2 = Ra2/12, and g3 is given
by Eq. (36). It is easy to show that in this case the condition
s2 = 4p3 − g2p − g3 is satisfied identically, so that

y0 = InverseWeierstrass P

[{
Ra − 2γ

12
,
λ

6

}
, {g2, g3}

]
(37)

Therefore, the constants of integrations E and y0 are uniquely
determined in terms of Ra, γ and λ and thus the integral condi-
tion (31) expresses um as a function of Ra, γ and λ. Then, the
two boundary conditions yield two additional equations for Ra,
γ , λ. Accordingly, the parameters Ra, γ , λ can be expressed
in terms of um and the two surface quantities prescribed by the
boundary conditions. In this way the velocity problem has ba-
sically been solved and the subsequent task is to determine the
values of Ra, γ and λ from Eq. (31) and the two wall conditions
selected from the four equations (25). In order to be specific,
in the next two sections we show how this general procedure
works, by applying it to some boundary conditions which, to
our knowledge, have not yet been investigated in the literature.

4. Applications

4.1. Isoflux÷variable temperature wall conditions

As a first application of the solution the procedure described
in Section 3, we consider the case when the conditions (0) and
(1) indicated in Fig. 1 are selected from the four equations (25)
as follows:

Condition (0): q(0) = q0 (38a)

Condition (1): T (X,L) = T1x + T2 (38b)

The constants q0, T1 and T2 occurring in Eqs. (38) are given.
According to the classification described in Section 2.1, the
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isoflux and the variable wall temperature conditions (38) cor-
respond to the hybrid combination (iii)–(i), of a boundary con-
dition of the second and of the first kind, respectively. Now,
substituting Eq. (38b) into the third equation (25) and then com-
paring Eq. (38a) to the second equation (25) and to Eqs. (32),
we obtain

A = T1, B = T2 − T∗
[
u(1) − um

]
, λ = q0 (39)

The first equation (39) specifies the value of Ra by Eq. (21),
and the third equation (39) sets the parameter λ equal to
the prescribed wall heat flux q0, so that the velocity solution
u = u(y,Ra, γ, λ) = u(y,Ra, γ, q0) given by Eq. (30) con-
tains a single free parameter, namely the parameter γ , only.
The value of γ can then be determined for a prescribed um

from the integral condition (31). Thus, the velocity solution
u = u(y;Ra, γ, q0) being known, the second equation (39)
gives the value of the constant B , so that the average tempera-
ture Tm(X) is determined by Eq. (8) explicitly. The dimensional
temperature field is obtained subsequently from Eq. (10). In this
way, the problem corresponding to the hybrid boundary condi-
tions (38) has basically been solved, and the only remaining
“detail” is to solve Eq. (31) for γ when the values of Ra, q0 and
um are specified.

In order to gain a deeper insight in the latter issue, in Fig. 2
the average velocity as a function of γ has been plotted ac-
cording to Eq. (31) for q0 = 1 and three different values of the
Darcy–Rayleigh number Ra.

Fig. 2 emphasizes the following properties of the function
um = um(Ra, γ, q0).

• For specified Ra and q0, solutions only exist when the pre-
scribed value of um does not exceed a maximum value
um,max, i.e., the domain of existence of the solution is
um � um,max, where um,max is reached at a value γ ≡ γmax

of the parameter γ which depends on Ra and q0, γmax =
γmax(Ra, q0).

Fig. 2. Plot of the average velocity (31) as a function of the parameter γ , for
q0 = 1 and three different values of Ra with increasing values of Ra, the max-
imum value um,max of um increases and, at the same time, moves to the right.
The dots on the curves corresponding to Ra = +3 and Ra = −3 have the coor-
dinates (γ,um) = (11,2.323645) and (γ,um) = (8,−0.676355), respectively,
and are related to each other according to Eq. (40).
• The existence domain um � um,max is not bounded from
below; all negative values of um being allowed.

• For any prescribed value of um in the range um < um,max,
the mixed convection problem admits two solutions (dual
solutions) corresponding to two different values γ1(um)

and γ2(um) which become coincident for um = um,max, i.e.
γ1(um,max) = γ2(um,max) = γmax(Ra, q0).

• With increasing values of Ra (and a specified q0), the max-
imum um,max increases and, at the same time, moves to the
right. As a consequence of the symmetry property (26), the
following relationships hold

um(Ra, γ, q0) = Ra + um(−Ra, γ − Ra, q0) (40)

γmax(Ra, q0) = Ra + γmax(−Ra, q0) (41)

um,max
[
γmax(Ra, q0)

] = Ra + um,max
[
γmax(−Ra, q0)

]
(42)

In the cases (Ra, q0) = (3,1) and (Ra, q0) = (−3,1) shown
in Fig. 2, we find γmax(3,1) = 6.61467, γmax(−3,1) =
3.61467, um,max[γmax(3,1)] = 3.62616 and um,max
[γmax(−3,1)] = 0.62616, in full agreement with Eqs. (41)
and (42). The two dots of Fig. 2 are related to each
other according to Eq. (40) for Ra = 3 and γ = 11, in
which case um(−3,8,1) = −0.676355 and um(3,11,1) =
3 − 0.676355 = 2.323645.

• Nontrivial dual flow solutions of vanishing average veloc-
ity, um = 0, also can exist, as long as um,max � 0. The inte-
gral balance equation (24) shows that in this case, no heat
is transported by the moving fluid in the longitudinal direc-
tion. The sum of the incoming heat flux q(0) and of the heat
flux qfrictional due to the viscous friction equals the outgoing
heat flux q(+1) through the right wall of the channel. The
latter property holds obviously also for um �= 0, but Ra = 0.

As already mentioned, the sign of Ra characterises the
interplay between the external driving force and the buoy-
ancy forces. Thus, the buoyancy aids the forced convection
flow when sgn Ra = sgnum, and opposes it when sgn Ra =
− sgnum. As an illustration of the quite complicated depen-
dence of um on Ra, in Figs. 3(a), (b) the function um =
um(Ra, γ, q0) has been plotted for q0 = 1, γ = +1 and γ =
−1 in the ranges Ra � 0 and Ra � 0, respectively. Having
in mind that the viscous dissipation term of the energy equa-
tions breaks the physical up/down equivalence of the buoyant
flows over and upward projecting hot plate and over its down-
ward projecting cold counterpart (see [26]), in the present case
the aiding upward-flows are physically distinct from the aid-
ing downward-flows. The same holds for the opposing up-
and downward-flows, too. These features are clearly seen in
Figs. 3(a) and (b).

In addition to the velocity and temperature field, in the case
of boundary conditions (38) the following two quantities are of
engineering interest.

• The temperature distribution T (X,0) of the left wall of the
channel, where the incoming heat flux q(0) has been pre-
scribed, and
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(a)

(b)

Fig. 3. (a) Plots of the average velocity um as a function of Ra for q0 = 1 and
γ = +1 and γ = −1, in the range Ra � 0. The two curves are not symmet-
ric with respect to the Ra-axis. At Ra = 0, e.g., one has um = 0.405624 and
um = −1.80747 for γ = +1 and γ = −1, respectively. (b) Plots of the aver-
age velocity um as a function of Ra for q0 = 1 and γ = +1 and γ = −1, in the
range Ra � 0.

• The outgoing heat flux through the right wall of the chan-
nel, q(1), where the temperature distribution T (X,L) =
T1x + T2 has been prescribed.

The explicit expressions of these quantities are obtained
from Eqs. (25), (30), (34) and (20) as:

T (X,0) − T (X,L)

T∗
= u(0) − u(1) ≡ θw(0)

= 2γ − Ra

2
+ 6P(1 + y0;g2, g3) (43)

q(1) = 6P ′(1 + y0;g2, g3) (44)

The expressions (29a) and (36) of g2 and g3 as well as the dif-
ference 2γ − Ra occurring in Eqs. (37) and (43) are invariant
under the transformation {Ra → −Ra; γ → γ −Ra}. As a con-
sequence the dimensionless temperature (43) of the left wall, as
well as the dimensionless heat flux (44) through the right wall
of the channel satisfy the simple symmetry relationships

θw(0,Ra, γ, q0) = θw(0,−Ra, γ − Ra, q0)

q(1,Ra, γ, q ) = q(1,−Ra, γ − Ra, q )
(45)
0 0
We may conclude that for the boundary conditions (38), all the
quantities of physical and engineering interest can be can be
calculated with the aid of the unified approach explicitly. In
addition, it is worth emphasizing here the results correspond-
ing to some important particular cases of the conditions (38),
also can be recovered from the results of the present section.
Such cases are (i) the isoflux÷isothermal boundary conditions
corresponding to q0 �= 0 and T1 = 0 (i.e. Ra = 0), and (ii)
the adiabatic÷isothermal boundary conditions corresponding
to q0 = 0 and Ra = 0. Furthermore, the latter case (q(0) =
0, T (X,L) = T2) yields the “half-channel” results correspond-
ing to the symmetric isothermal÷isothermal boundary condi-
tions T (−L) = T (+L) = T2, prescribed for a channel of width
2L,Y ∈ [−L,L]. Similarly, the case (q0 = 0, T (X,L) = T1x +
T2) yields the “half-channel” results corresponding to the sym-
metric variable temperature÷variable temperature conditions)
T (X,−L) = T1x +T2, T (X,+L) = T1x +T2) prescribed for a
channel of width 2L.

4.2. Isoflux÷isoflux wall conditions

We consider now the case in which the conditions (0) and
(1) are selected from the four Eqs. (25) as

Condition (0): q(0) = q0 (46a)

Condition (1): q(1) = q1 (46b)

where the constant heat fluxes q0, and q1 are given. Accord-
ing to the classification described in Section 2.1, the conditions
(46) correspond to the self-combination of the isoflux condi-
tions (iii). The condition (46a) sets again parameter λ equal to
the prescribed incoming wall heat flux q0. Comparing to the
isoflux÷variable wall temperature conditions (38), the essen-
tial difference consists now in the fact that the values of A and
B occurring in Eqs. (25) are not determined by the isoflux con-
dition (46b) explicitly. Instead, the value of A is determined via
Ra and the equation

6P ′(1 + y0;g2, g3) = q1 (47)

implicitly, as a function of q0, q1 and γ , while B still re-
mains unspecified. In this way, owing to Eq. (47), the velocity
u = u(y,Ra, γ, q0) becomes a function of y, q0, q1 and γ (and
the average velocity um a function of q0, q1 and γ ). In other
words, specifying the values of q0, and q1, Eq. (47) yields Ra
as a function of γ , and Eq. (31) gives um as a function of γ (for
the specified values of q0, and q1). Thus, for a prescribed value
of um, the corresponding values of γ can be calculated, and the
problem is basically solved again. As mentioned above, for the
isoflux÷isoflux boundary conditions (46) the value of the in-
tegration constant B remains undetermined. This circumstance,
however, is physically not disturbing since it corresponds to our
freedom to choose the origin of the temperature scale at our
will.

The solution space possesses a rich structure which is il-
lustrated by Fig. 4(a) where q1 and um, as being given by the
respective equations (47) and (31), have been plotted as func-
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(a)

(b)

Fig. 4. (a) Plot of q1 and um as functions of γ for q0 = 2, and Ra = −13.0029.
(b) Plots of the dimensionless velocity profiles u(y) associated with the four
points of (a).

tions of γ for q0 = 2, and Ra = −13.0029. The curves q1 and
um have in this case four intersection points, denoted by 1, 2, 3
and 4, respectively. The coordinates of these intersection points
are (γ, q1 = um)1 = (−12.2057,−11.7737), (γ, q1 = um)2 =
(−7.01347,−2), (γ, q1 = um)3 = (−1.12100,−0.23704) and
(γ, q1 = um)4 = (5.00667,−2). The value Ra = −13.0029 has
been chosen so that for the intersection points 2 and 4 (joined
in Fig. 4 by a dashed line), in addition to q1 = um, also the
equality (q1 = um)2 = (q1 = um)4 = −2 holds. This means
that the two corresponding solutions u(y) obtained for γ =
γ2 = −7.01347 and γ = γ4 = 5.00667 are associated with the
same set of values of the three prescribed quantities,(q0, q1 =
um)2 = (q0, q1 = um)4 = (2,−2). For the intersection points 1
and 3, in contrast, the distinct sets of values (q0, q1 = um)1 =
(2,−11.7737) and (q0, q1 = um)3 = (2,−0.23704) hold. The
velocity profiles associated with the points 1, 2, 3 and 4 are
plotted in Fig. 4(b). All the four velocity profiles describe down-
ward aiding flows (um < 0,Ra < 0) but, while the flow 1 is
unidirectional, the other three are bidirectional flows. Having
in mind that, on account of Eq. (19), the dimensionless temper-
ature profiles and θ(y) are shifted with respect to the velocity
profiles u(y) by −um, θ(y) = u(y) − um, their average values
are always identically vanishing,

θm =
1∫

0

θ dy =
1∫

0

(u − um)dy = 0 (48)

5. Results and discussion

The main results of the paper can be summarized as follows.

• The governing differential equation of the velocity field ad-
mits the first integral

1

2
u′2 + 1

3
u3 − Ra

2
u2 = constant ≡ E (49)

where u′2 represents the square of the dimensionless heat
flux q(y) = −u′(y).
Eq. (49) resembles the conservation law of the total me-
chanical energy during the 1D motion of a particle of mass
m = 1, coordinate u, velocity u′ and of potential energy
W = u3/3 − Rau2/2, the time variable being y. Similarly,
Eq. (49) represents also in the present context a differential
“conservation law”. Its message is that the interplay be-
tween the driving external force (pressure gradient), buoy-
ancy, viscous dissipation heat diffusion is such, that the
effect of the boundary conditions is transferred from one
wall of the channel to the other by preserving the value of
the left-hand side of Eq. (49) for all distances y. In particu-
lar, the relationship

(
1

2
u′2 + 1

3
u3 − Ra

2
u2

)
left wall

=
(

1

2
u′2 + 1

3
u3 − Ra

2
u2

)
right wall

(50)

holds. The practical benefit of Eq. (50) is that it connects
the wall values of the heat flux q(y) = −u′(y) and temper-
ature θ(y) = u(y) − um across the channel to each other.

• The existence of the dual solutions and of the bidirectional
flows with vanishing average velocity (properties, which
have already been reported in previous investigations), turn
out to represent general features of the solution space when
in the mixed convection the (nonlinear) effect of the vis-
cous dissipation is taken into account.

• A further general effect of the viscous dissipation is that
it breaks the usual equivalence of the aiding upward and
downward, as well as of the opposing upward and down-
ward mixed convection flows, respectively (see Figs. 3). As
being already emphasized by Al-Hadhrami et al. [27], all
these aiding and opposing flows are physically realizable.

• The approach reported in the present paper for various
combinations and self combinations of the thermal bound-
ary conditions of the first and second kind, (i)–(iii) (listed
in Section 2.1), can also be extended to the case of (linear)
thermal boundary conditions of the third kind.
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6. Conclusions

We have considered mixed convection in a vertical plane
parallel channel filled with a porous medium. Steady parallel
flow has been examined, assuming that the effect of viscous
dissipation is significant. The main message of the paper is that
the general solution of the governing balance equations can be
given in an exact analytical form in terms of the Weierstrass’
elliptic P-function. Based on this exact solution, a unified an-
alytical approach could be developed which applies to all the
thermal boundary conditions compatible with the steady par-
allel flow regime. As an illustration of this method, the cases
of the isoflux÷variable temperature, and isoflux÷isoflux wall
conditions have been worked out in detail.
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